

香港中文大學

The Chinese University of Hong Kong

CSCI5550 Advanced File and Storage Systems

Lecture 00: Course Information

Ming-Chang YANG mcyang@cse.cuhk.edu.hk

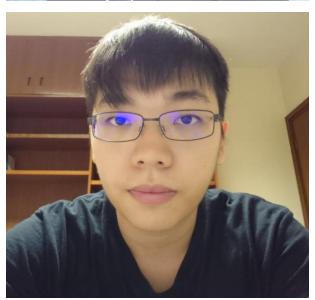
Course Information

- CSCI5550 Advanced File and Storage Systems
- Course Time and Place
 - Lecture (*3)
 - MON 09:30~10:15 (@ ERB 405)
 - TUE 13:30~15:15 (@ ERB LSB C4)
 - Tutorial (*1)
 - MON 10:30~11:15 (@ ERB 405)

PS. Check the course schedule for our arrangement.

- Course Website
 - http://www.cse.cuhk.edu.hk/~mcyang/csci5550/2020S/csci5 550.html

Course Instructor & Teaching Assistant


Course Instructor

- Prof. Ming-Chang YANG (楊明昌)
 - Office: SHB 906 (3943-8405)
 - Office Hours: MON 14:30~16:30
 - Email: mcyang@cse.cuhk.edu.hk

Teaching Assistant

- Tsun-Yu YANG (楊尊宇)
 - Office: TBD
 - Office Hours: TUE 10:00~12:00
 - Email: yangty@cse.cuhk.edu.hk

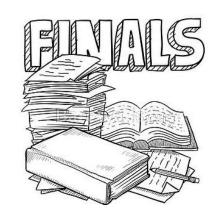
Pre-requisites

 CSCI3150 Operating Systems (or equivalent)

- If you haven't taken it or have failed it, then you are advised NOT to take this course.
- Talk to me if you are uncertain.

 Comfortable with C/C++ programming

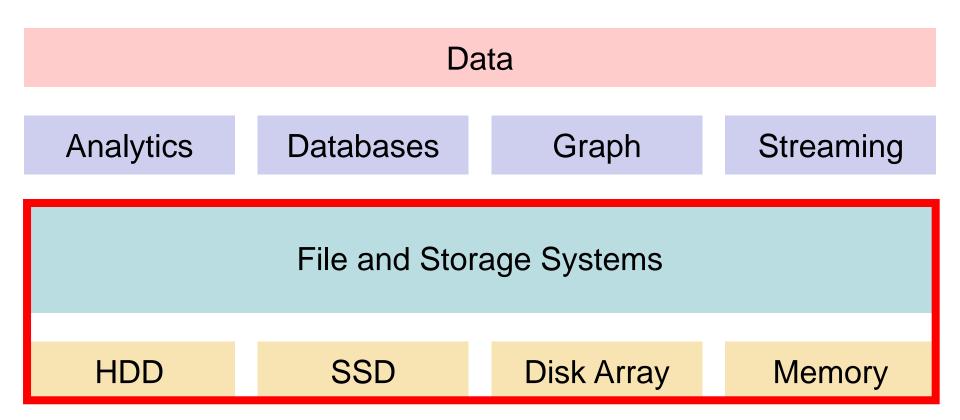
Comfortable with Linux


Course Assessment

- Programming Project (40%)
 - Group of 1-2 students
- Literature Survey & Presentation (30%)
 - A literature survey report and presentation to prove your knowledge in file and storage systems
 - Group of 1-2 students
 - Peer grading
- Final Exam (30%)
- Bonus (5%)

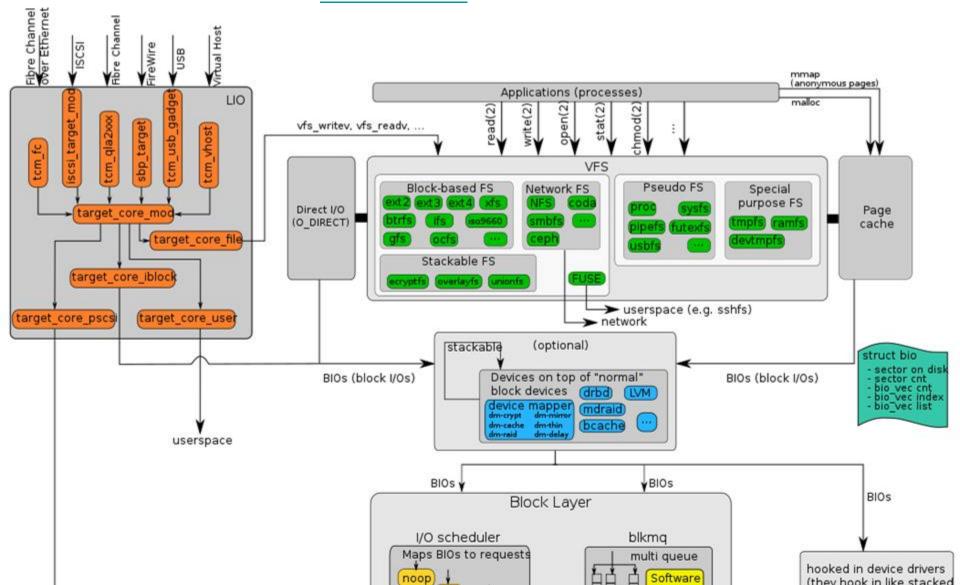
Course Materials

- Suggested Readings
 - Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau,
 "Operating Systems: Three Easy Pieces"
 - Free online form: http://pages.cs.wisc.edu/~remzi/OSTEP/


Intro	Virtualization		Concurrency	Persistence	Appendices
<u>Preface</u>	3 <u>Dialogue</u>	12 <u>Dialogue</u>	25 <u>Dialogue</u>	35 <u>Dialogue</u>	<u>Dialogue</u>
<u>TOC</u>	4 <u>Processes</u>	13 <u>Address Spaces</u> code	26 <u>Concurrency and Threads</u> code	36 <u>I/O Devices</u>	Virtual Machines
1 <u>Dialogue</u>	5 <u>Process API</u> <u>code</u>	14 <u>Memory API</u>	27 <u>Thread API</u> <u>code</u>	37 <u>Hard Disk Drives</u>	<u>Dialogue</u>
2 <u>Introduction</u> code	6 <u>Direct Execution</u>	15 Address Translation	28 <u>Locks</u> <u>code</u>	38 <u>Redundant Disk Arrays (RAID)</u>	<u>Monitors</u>
	7 CPU Scheduling	16 <u>Segmentation</u>	29 <u>Locked Data Structures</u>	39 <u>Files and Directories</u>	<u>Dialogue</u>
	8 <u>Multi-level Feedback</u>	17 Free Space Management	30 <u>Condition Variables</u> <u>code</u>	40 File System Implementation	Lab Tutorial
	9 <u>Lottery Scheduling</u> code	18 <u>Introduction to Paging</u>	31 <u>Semaphores</u> code	41 <u>Fast File System (FFS)</u>	Systems Labs
	10 Multi-CPU Scheduling	19 <u>Translation Lookaside Buffers</u>	32 <u>Concurrency Bugs</u>	42 <u>FSCK and Journaling</u>	xv6 Labs
	11 <u>Summary</u>	20 <u>Advanced Page Tables</u>	33 Event-based Concurrency	43 <u>Log-structured File System (LFS)</u>	
		21 Swapping: Mechanisms	34 <u>Summary</u>	44 <u>Flash-based SSDs</u>	
		22 <u>Swapping: Policies</u>		45 Data Integrity and Protection	
		23 <u>Complete VM Systems</u>		46 <u>Summary</u>	
		24 <u>Summary</u>		47 <u>Dialogue</u>	
				48 <u>Distributed Systems</u>	
				49 <u>Network File System (NFS)</u>	
				50 <u>Andrew File System (AFS)</u>	
				51 <u>Summary</u>	

- Papers from top system conferences or highly referenced:
 - E.g., FAST, OSDI/SOSP, USENIX ATC, EuroSys, NSDI, etc.

What We are Going to Learn (1/2)


 Understand the design and implementation of file and storage systems, from a system perspective:

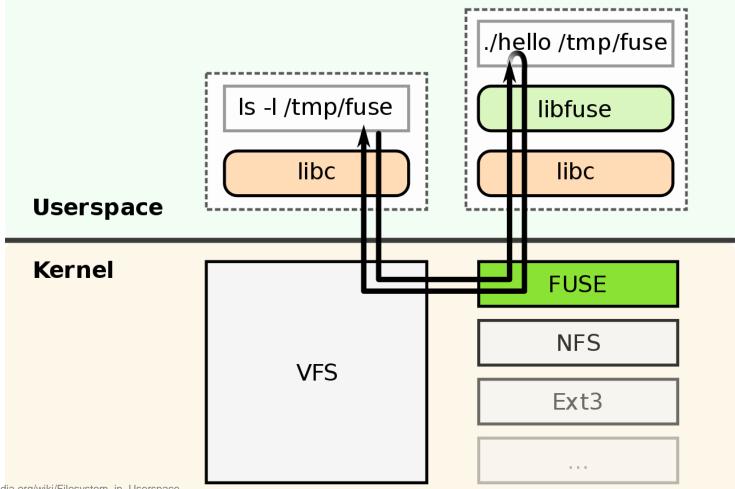
What We are Going to Learn (2/2)

Understand the I/O stack of Linux kernel:

Make Your Own File System

File System in Kernel-space

- Very difficult to build
- Need careful use of synchronization primitives
- Only C language supported
- Standard C libraries not available
- Need root privilege


File System in User-space (using FUSE!)

- Framework to implement user-space file system
 - User-space file systems trade performance for flexibility
- Easy to write: Avoid awful coding in kernel
- Easy to test: Run like a normal user program
- Easy to integrate libraries: Can easily deploy libraries

FUSE: Filesystem in USErspace

• **FUSE** lets non-privileged users create their own file systems in user-space without editing kernel code.

https://en.wikipedia.org/wiki/Filesystem_in_Userspace

Project: My File System using FUSE

First Phase: All-In-Memory File System

- Implement an all-in-memory file system based on FUSE.
 - Both metadata (e.g., indexing structures of the file system) and file data are maintained in the memory.

Second Phase: In-Storage File System

- Based on the first phase, convert the all-in-memory file system into an in-storage file system.
 - Both metadata and file data are persisted into a storage device (e.g., a USB flash drive).
 - The file data can still be accessed after re-mounting the user-space file system.

Course Schedule

Course scriedule								
	W	Date	Lecture	Suggested Readings	Tutorial			
——— BASIC ———	1	Jan 6, 7	Lec01: I/O Devices	OSTEP 36, 37	-			
	2	Jan 13, 14	Lec02: RAID and Data Integrity	OSTEP 38, 45	-			
	3	Jan 20, 21	Lec03: File System Basics	OSTEP 39~42	-			
	4	Jan 27, 28	Lunar New Year Vacation	No class	No tutorial			
	5	Feb 3, 4	Lec04: File System Designs (I)	OSTEP 43, 49, 50	HW1			
	6	Feb 10, 11	Lec05: File System Designs (II)	GFS, Ceph	-			
	7	Feb 17, 18	Lec06: Benchmarking	9Y-Study	HW1 Q&A			
– ADVANCED –	8	Feb 24, 25	Lec07: Solid-State Drives	SSD-Tradeoffs, F2FS	-			
	9	Mar 2, 3	Lec08: New Hard Disk Drives	<i>SMR, IMR, SMR-FS</i>	-			
	10	Mar 9, 10	Lec09: Memory Storage	NVM, PMFS	HW2			
	11	Mar 16, 17	Lec10: Key-Value Storage	LevelDB, RocksDB	-			
	12	Mar 23, 24	Lec11: Graph Storage	GraphChi, BASC	HW2 Q&A			
	13	Mar 30, 31	Reading Week	No class	No tutorial			
	14	Apr 6, 7	Literature Survey Presentation		Presentation			
	15	Apr 13, 14	Easter / Presentation (Cont'd)		No tutorial			

Important Notes

- Visit our course website regularly
- Plagiarism will NOT be tolerated
 - Don't copy!
 - Don't let other(s) copy!
 - Can discuss but write up the solutions by yourself!
- Honesty in Academic Work:
 - http://www.cuhk.edu.hk/policy/academichonesty/

The best way to learn is through practice!